Dominion Resources Services, Inc.

Possum Point and Bremo Power Station Coal Ash Pond Closures Presentation

Presentation Overview

- Overview of Capabilities and Services
 - Safety Program
 - Core Service Areas
- Personnel Resources/Key Project Personnel
- Relevant Project Experience
- Specific Project Examples
 - Emphasis on Design-Build
- Value-Added Services
- General Approach
 - Possum Point Power Station
 - Bremo Power Station
- Potential Challenges and Mitigations
 - Regulatory Timeframes
 - Material Handling
 - Borrow Material and Cap Construction
 - Water Treatment

Company Overview

- Environmental remediation, demolition and specialty construction firm with 350+ employees
- Completion of over 2,800 projects since 1988
- Excellent financial strength as part of the Washington group of companies with annual revenues exceeding \$2.5 Billion
- Bonding capacity of \$100 Million
- Large fleet of owned equipment valued at nearly \$25 Million
- 13 locations across North America

Safety Program

Goal: "Incident-Free Performance" on all projects

Behavior Based Safety Program utilizing:

- Site Specific Health & Safety Plans (HASPs), Activity
- Hazard Analysis (AHAs)
- Daily Tailgate Meetings, Employee Incentives
- Behavior Based Observations, Stop Work Authority

Current Experience Modification Rate (EMR) = 0.57

H&S department includes over 30 professionals focused exclusively on ensuring project safety, including:

- Certified Industrial Hygienists (CIH)
- Certified Safety Professionals (CSP)
- Certified Hazardous Materials Managers (CHMM)
- Construction Health and Safety Technicians (CHST)
- Loss Control, H&S Managers, H&S Supervisors

Core Service Areas

Envirocon's Core Service Areas include:

- Environmental Remediation
- Dredging & Sediment Remediation
- Decontamination, Decommissioning & Demolition
- Geotechnical Construction
- Nuclear & Government Services

Envirocon has handled millions of cubic yards of contaminated soil, sludge, sediment, and hazardous materials.

Our Environmental Remediation capabilities include:

- Soil excavation and materials handling
- Soil and sludge treatment, solidification, and stabilization
- Heavy dewatering of excavated materials
- Repository construction, capping, and containment
- Radiological remediation
- Mine reclamation
- Soil and groundwater remediation systems

Personnel Resources and Project Management Structure

Key Personnel Experience

Name and Title	Years of Experience	Coal ash handling	Soil, sludge, & sediment handling	Dewatering of excavated materials	Water treatment system operation	Liner installation	Installation of cap & cover systems
Dr. Paul Lear, Senior Technical Director	29	•	•	•	•	•	•
Michael Fisher, Manager of Geotechnical Services	20	•	•	•	•	•	•
Travis Parker, Project Director	22		•	•	•	•	•
Pat Davidson, Project Director	24	•	•	•	•	•	•
Brian Bell, Project Director	30		•	•	•	•	•
Alan Buell, Project Director	33		•	•	•	•	•
Bruce Culbertson, Project Manager	25	•	•	•	•	•	•
Richard Whitman, Construction Manager	17		•	•	•	•	•
Verne Musser, Construction Manager	30		•	•	•	•	•
Bert Sparks, Construction Manager	16		•	•	•	•	•
Robert Castilaw, Project Superintendent	25		•	•	•	•	•

Project	Location	In-situ dewatering	Coal tar sediment & ash handling	Cover / capping system	Liner installation
North Lansing Ash Pond Slurry Wall	North Lansing, MI			•	
Gypstack 4 – Phase I & II, Gypstack 5 Leachate Underdrain and Closure	Pasadena, TX	•		•	•
Western Refining Phases I & II	Yorktown, VA	•		•	•
Sunburst Refinery Pond Closure	Sunburst, MT	•			•
Navassa Site Remediation	Navassa, NC	•		•	•
Chattanooga Creek Remediation	Chattanooga, TN	•	•	•	
Hylebos Waterway Sediment Remediation	Tacoma, WA	•	•	•	
Lagoon (SWMU 22) Closure	Dover, OH		•	•	
Landfill & Pond Closure	Muncie, IN	•		•	
Moab Atlas Tailings	Moab, UT	•		•	
Stauffer Chemical OU-1 Superfund Site	Tarpon Springs, FL	•		•	•
Phosphorus Pond Closure Phase II, III, IV, and V	Pocatello, ID	•		•	
21st Street Pond Remediation	Ogden, UT	•	•	•	•
Stryker Bay Sand Cap/Surcharge	Duluth, MN			•	
NPDES Ponds Cleanup	Goldendale, WA	•		•	•

North Lansing Ash Pond Slurry Wall Lansing, MI

- Removal and transport of 75,000 cy of coal ash
- Installation of a 413,950 sf soilbentonite slurry wall around ash pond
- Slurry wall depths ranged from 72 to 103 feet below ground surface
- Construction of a 50-foot wide work platform

Contaminants of Concern

Arsenic, Selenium, Aluminum, Iron

Relevance to Ash Pond Closure Work

- ✓ Excavation and handling of coal ash
- ✓ Trench excavation
- ✓ Large scale earthwork and surface grading
- ✓ Installation of a trench cap

Gypstack 5 Dewater and Cap Project Pasadena, TX

- Engineer-lead Design/Build Project
- Dewatered top 20 feet of the 300-acre
 Gypstack 5 with trenches and sumps
- Low pH water was treated and deep well injected
- Solidified, excavated, and transported
 185,000 cy of gypsum
- Graded side slopes, amended the surface of the gypstack, and installed sod
- 114,921 manhours worked with incurring a single OSHA recordable incident

NORM and pH Relevance to Ash Pond Closure Work ✓ Handling a highmoisture thixotropic material ✓ Large scale earthwork and surface grading

Gypstack 4 Dewater and Cap Project Pasadena, TX

- Engineer-lead Design/Build project
- Dewatered top 28 feet of the 45-acre
 Gypstack 4 with trenches and sumps
- Low pH water was treated and deep well injected
- Solidified, excavated, and placed 216,000 cy of gypsum
- Constructed and lined a 90 million gallon holding pond
- Graded side slopes, amended the surface of the gypstack, and installed sod
- 42,711 manhours worked with incurring a single OSHA recordable incident

Contaminants of Concern

NORM and pH

Relevance to Ash Pond Closure Work

- ✓ Handling a highmoisture thixotropic material
- ✓ Dewatering of excavated material
- ✓ Large scale earthwork and surface grading
- ✓ Liner installation

Western Refinery Remediation Phase I & II Yorktown, VA

- Design/Build based on change in conditions
- Excavation, solidification, and placement of 51,000 yards of refinery waste
- Removal, solidification, and transportation of 100,000 cy of liquid and residual petroleum sludge
- Stabilization of 100,000 cy of lagoon sediments
- Construction, cap, and closure of a 5-acre and an 18-acre RCRA Compliant CAMU

Contaminants of Concern

Ethylbenzene, Napthalene, PCBs, Toluene, Xylene

Relevance to Ash Pond Closure Work

✓ Impoundment dredging and mechanical excavation

- ✓ Dewatering and Solidification of excavated material
- ✓ Construct CAMU for stabilized waste placement
- ✓ Construction of a cap and cover system

Atlas Uranium Mill Tailings Dewatering and Excavation Project Moab, UT

- Engineer-lead, Design/Build project
- Trenched and constructed dewatering sumps on uranium tailings surface
- Dewatered in excess of 20 million gallons of water from uranium tailings
- Tailings ranged from sand to slimes that contained up to 85% water
- Water was used for dust control and to condition tailings for land farming
- 4 million tons of uranium mine tailings excavated and transported offsite

Contaminants of Concern

Uranium, Radium, Acid, Ammonia

Relevance to Ash Pond Closure Work

✓ Excavation of mine tailings

surface grading

- ✓ Large scale ✓ Operation of dust earthwork and control systems
- ✓ Dewatering of excavated material

Milltown Dam Sediment Dewatering and Excavation Project Missoula, MT

- Envirocon-lead, Design/Build Superfund project
- Sediment dewatering accomplished with active and passive techniques
- Passive dewatering included lowering the pool behind the Milltown Dam
- Active dewatering included installing an extensive system of de-watering wells in arsenic impacted sediment
- De-watered 3.6 million gallons per day and a total of 1.3 billion gallons over a year
- Discharged water to Clark Fork River
- Excavation and rail transport of 2.2
 million cy of arsenic impacted sediment

Contaminants of Concern		
Arsenic, Iron, Lead, Cadmium, Zinc, Copper		
Relevance to Ash Pond Closure Work		
✓ Excavation of contaminated sediments	✓ Dewatering of excavated material	
✓ Large scale earthwork and surface grading	✓ Liner installation	

Envirocon's Value Added Services

- Design/Build Projects
- Budgetary Estimates
- Constructability Reviews
- Programmatic Approach to Project Development and Execution. This provides:
 - Multi-phase project scheduling
 - Accurate budget forecasts for multiple phases of work

Envirocon's Value Added on Design/Build Projects

Project Name	Client	Final Project Value	Value/Engineering Savings
Hudson Refinery Closure	Confidential	\$9,000,000	\$2,000,000
BP Casper Refinery Closure	BP ARCO	\$50,000,000	\$10,000,000
Refinery Acid Sludge Stabilization	Texaco	\$3,200,000	\$1,500,000
Hicksville Radiation Site	GTE	\$29,000,000	\$5,000,000
West Chicago Radium Removal Action	Kerr McGee	\$43,000,000	\$31,000,000
Gypstacks 2 Through 5 Closure Project (Ongoing)	ExxonMobil	\$35,000,000	\$1,000,000
Milltown Dam Demolition/Sediment Removal Superfund Site	BP ARCO	\$100,000,000	\$25,000,000
Chattanooga Creek Sediment Removal	PRP Committee	\$12,000,000	\$2,500,000
Frontier Refinery Slurry Wall	Frontier Refinery	\$2,600,000	\$500,000
Wyoming Refinery Slurry / Cut Off Walls	Wyoming Refining	\$579,000	\$45,000

Possum Point General Approach

Separate Pond E into a "clean closure" south area and a capped nouth area by building a berm cap; dredging of ash to northern half; water treatment; constructing final berms; placing geomembrane liner; and re-establishing plant water flow and re-establishing plant water flow and re-establishing plant water flow and grading the free water, installing dewatering trenches, compacting and grading the ash, compacting and grading the sah, capping with a composite liner, placing topsoil, and seeding/restoration seeding/restoration	Removing any overburden material, trenches trenches Compacting and grading the ash, composite liner, composite liner, soil, and soil, and soil, and Seeding/restoration Seeding/restoration	 Removing any overburden material, trenches, trenches, grading the ash, composite liner, composite liner, soil, and soil,
a bnog	Dond D	Ponds A, B, and C

Bremo General Approach

installing dewatering trenches, compacting and grading the ash, capping with a composite liner, placing topsoil, and seeding/restoration	© 2015 Google	
 East Area: discharging the free water, ipotelling detectoring the free water, 		
 West Area: maintaining the water cap; dredging of ash to northern half; berms; placing geomembrane liner; and and re-establishing plant water flow 	grading the ash, Capping with a composite liner, Placement of cover soil, and Seeding/restoration	grading the ash, Capping with a composite liner, Placement of cover soil, and Seeding/restoration
Separate West Pond into a "clean area by building a berm area by building a berm	Installing dewatering trenches, Compacting and arading the seb	nun Grusondusoo
Mest Pond	Dnog diyon	East Pond

Potential Challenges and Mitigation – Regulatory Timeline

CCR Rule has not been published in
Federal Register

- Planned activities should follow the prepublication CCR rule
- Start of design before effective date of CCR Rule gives more time for field implementation

Inactive CCR surface impoundments can not receive CCR materials after effective date

- Any necessary movement of CCR between impoundments needs to be done prior to effective date of CCR Rule
- Absolutely no transfer of CCR materials between inactive impoundments after effective date

CCR Rule requires closure of inactive impoundments within 36 months of FR publish date

- Start of design before effective date of CCR Rule gives more time for field implementation
- Provide a knowledgeable and experienced team to develop safe alternatives

Potential Challenges and Mitigation – Material Handling

Ash material may not support conventional equipment	 LGP dozers and/or swamp excavators to conduct initial earthmoving
Slit trenches/sumps may not adequately dewater the ash material	Well point dewatering systems as needed.
Ash material characteristic change over the course of the project	 Periodically sample the ash material determine proper moisture/density relationship.
Deposition of suspended solids post-dredging in "clean closure" areas	Scrape the top 6 inches of bottom once the free water has been removed and placed in the non- "clean closed" areas of the pond.
Quiescent settling of the dredge material will require more than 12 hours to reduce suspended solids	 Create additional areas for dredge settling in the non-"clean closure" areas of the ash pond. Provide an experienced project team to develop safe alternative.

Potential Challenges and Risk Mitigation – Borrow Material

Encountering unanticipated ground water in borrow areas	Dewatering equipment available onsite
Encountering borrow material not meeting specification	 Relocate within the borrow area or to an additional borrow area with approval Relocate within the borrow area or amend if possible
Cap inaccessible to heavy equipment due to excess moisture content in borrow material	 LGP ground pressure equipment for initial grading and placement Mats will be available onsite Management team with extensive experience and a history of working on projects with similar types of materials
Haul roads not available or inadequate	 Improve existing roadways Build additional haul roads Provide a knowledgeable and experienced team to develop safe alternative plan

Potential Challenges and Risk Mitigation – Water Treatment

Quiescent settling for 24 hours does not adequately reduce suspended solids to allow discharge	 Add coagulation/flocculation and filtration treatment as needed. Provide a knowledgeable and experienced team to modify system to meet discharge requirements.
Water treatment system delivery delay	 Fast track design effort through in-process design reviews.
Water treatment system large component failure	 Deliver water treatment system with minimum critical spare parts inventory. Perform component reliability analysis during design phase.

Conclusion – Benefits to Dominion

- Superior Health & Safety culture minimizes risk and exposure; unwavering commitment to safety and quality puts Envirocon at the forefront of the industry
- Extensive equipment, personnel, and financial resources fully dedicated to performing remediation, environmental and construction projects
- Envirocon is part of the Washington Companies, with annual revenues exceeding \$2.5B
- Ability to offer turn-key integrated services and successfully execute multiple concurrent projects
- Track record of delivering challenging projects on schedule and on budget
- Provide value-added services and alternative solutions to meet Dominion's business goals
- Innovative contracting that fits Dominion's needs and risk profile

